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A FAST METHOD FOR SOLVING 

A CLASS OF TRI-DIAGONAL LINEAR SYSTEMS 

by 

Michael A. Malcolm and John Palmer 

ABSTRACT 

The solution of linear systems having real,  symmetric, diagonally 

dominant, tridiagonal coefficient matrices with constant diagonals is 

considered.    It is proved that the diagonals of the LU deccraposition of 

the coefficient matrix rapidly converge to full floating-point precision. 

It is also proved that the computed LU decomposition converges when 

floating-point arithmetic is used and that the limits of the LU diagonals 

using floating point are roughly within machine precision of the limits 

using real arithmetic.    This fact is exploited to reduce the number of 

floating-point operations required to solve a linear system from   8n-7 

to    5n+2k-5  , where    k    is much less than   n , the ordftr of the matrix. 

If the elements of the sub- and superdiagonals are    1   ,  then only   lm+2k-5 

operations are needed.    The entire LU deccraposition takes    k   words of 

storage, and considerable savings in array subscripting are achieved. 

Upper and lower bounds on    k    are obtained in terms of the ratio of the 

coefficient matrix diagonal constants and parameters of the floating-point 

number system. 

Various generalizations of these results are discussed. 
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Introduction 

We will consider the solution of linear algebraic systems having 

real symmetric, diagonally dominant,  tridiagonal coefficient matrices 

with constant diagonals.    This problem occurs frequently in solving certain 

kinds of partial differential equations, boundary value problems of ordin- 

ary differential equations, and cubic spline interpolation problems. 

Consider the coefficient matrix 

a      b 

b      a      b 

A = 
b      a      b 

i       • 

t       •      • 

b     a      b 

b     a 

of order    n .    The usual    LU    decomposition of    A    requires      n-1    divisions, 

n-1   multiplications, and    n-1    additions.    The solution of the equations 

LUx = d    requires an additional    n   divisions,    2n-2    multiplications, and 

2n-2    additions.    With the following observation, the entire    LU    decompos- 

ition of   A    can be stored in   k   floating-point words, and the solution 

of the linear system   Ax = d    can be obtained in    k    divisions,    5n-l   mul- 

tiplications, and   2n-2+k    additions, where    k    is usually much less than 

n  .    Typically,    k    is on the order of 10.    Moreover,    k    can easily be 

estimated from the values of    a    and    b   and parameters of the floating- 

point number system used in the solution.    If    b = 1  ,    then    n   multiplies 

can be avoided.     In addition to a smaller operation count,  substantial 

savings in array indexing are achieved. 



ü. Ihe Algorithm 

Consider the matrix 

a     1 

1 a     1 

1  a  1 
B = •  « 

1  a  1 

1 a 

where    a = a/b  .    Note that    A = bB .    The analysis,  as well as the comp- 

utation is simplified by considering the coefficient matrix to be    B    and 

the linear system    bBx = d   .    B    can be factored into the product    LU  , 

where 

L = 

1 

^L     1 

*2    1 

'n-1 

using the recurrence relations: 

,    U = 

u1      1 

"2       1. 

u 

or 

ul =: ^  '    ^i-l = ^"i-l '    ui = ^ " Ai_i '    i^2»««-»0» 

u.   = cv - l/u.   n   ,     i=2,... ,n 
i ^   i-l (1) 



Under suitable conditions,  to be discussed, the    I.    converge and 
J. 

'k = ^k+1 = • • • = ^n ^ * *0 machine accuracy. In the computer, one simply 

computes and stores the values of l    ,    i»l,...,Jc . The solution vector 

x can then be computed as follows: 

yl = dl ' 

yi = di ' ^i-^i-l > i=2"">k ' yi = di ' iyi-l' i=k+1»---»n > 

zi =je(yi - zi+1)  ,    i=n-l,...,k ,    zi =Jei(yi - z
i+1)> i=k-l,...,l , 

x, - b    z.   , i=l,...,n  . 

3 •    Convergence of the LU decomposition 

We will show that when    A    is diagonally dominant, the sequences 

[u,]  and [£,]  converge.    We will also find an estimate of the rate of 

convergence which can be used to determine a value for    k . 

It is sufficient to show that the sequence [u. ]  converges, and 

for this we assume diagonal dominance, o^ equivalently,  |a| > 2  .    The 

following theorem is a special case of a theorem of Parter (1962) for 

band matrices. 

Theorem 1:    If    [cr|  > 2  ,    then the sequence [u. ]  converges to    u   where 

-   2 1 s6n(0f)   T0^- ^ 
2 

(3) 

Proof;    Convergence follows from the fact that the sequence [oru.]   is bounded 

and monotone: 



Lemma 1 (boundness): If |er( > 2 , then 

a^ > 2 , i=l,.. 

Proof; From (l), v^ = or 

for some value of i > 1 

Thus   oru    = or   > k 

By (1), 

CO 

Now assume that  (4) holds 

oru 
2        2 

i+1 
= a    -(y/\x± >a    -a/2 > 2 

Lemma 1 follows by induction. I 
Lemma 2 (raonotonicity): If |a| > 2 , then 

cm.  < cm. , i+1,... . 

Proof; From (l), 

"2 - Ul = " " 

and   (y(u1+1 - u.) =-~ »(u. - u^) , i=2,... . 
i i-1 

It follows from Lemma 1 that the u. must all have the Same sign. Thus, 

by induction. 

<y(ui+1 - u.X 0 . I 
Now,  in the limit, 

u = a - 

or. u    - oru + 1 = 0 . 

Equation (3) is the quadratic formula with the sign of the radical chosen 

to avoid a contradiction with Lemma 1.    This completes the proof of 

Theorem 1. 



The following two theorems provide a way to estimate the value of   k 

Theorem 2;    If    U I > 2 ,    then 

r t-X.loy.    "I 
(5) 

where ß is the floating-point radix, t is the number of digits, 

and [5] denotes the smallest integer not less than t . 

Proof; We will first prove the following lemma. 

Lemma 3; l£ |a| > 2 , then 

*(ui+1 - u.) > -{a2  - -^- - I)1"1, i=l,... . (6) 

Proof;    From (l), Lemmas 1 and 2, 

^ui+i ■ V = n^rr a(ui" ^ < 0 ' (7) 
1 i-i 

and        i  = L_-_ > 0 ,    i=2,...   . (8) 
uiVl ^i " 1 

Now,      au.   = cv ;  ,    i=2,...   . (9) 
1 ui-l 

By Lemma 2, and the fact that    u.u > 0 , 

u. u    ' ' 

Thus,    au. > a    - -^- , 
'1 u    ' 

and      ITS <~5 5  '   i-2,... . ui i-l        cr" - -2- - 1 u 

Thus,    «(u       - ui) > —^  «(^ - ui_1), i=2,...   . 
a 1 

U 



"^^^ 

Repeated app3.ication of this inequality yields 

(ui+1 - u^ > (cy2 - -9L - l)1"^^ - u^, i=l, 

Since Qr(iu - u ) = -1 , 

the Lemma is proved. 

Dividing (6) by cm > 0 and taking absolute values, 

Vi - ui 
u <-i-(a2 --SL-l)1-1 

cm x    u   ' 

l-t 

I (10) 

(11) 

Requiring the right-side of (11) to be less than ß "  gives a sufficient 

condition on i for the convergence of [u.] . Taking logarithms yields 

the sufficient condition 

t - 1 - logau 
i > 1 + ^p - -^ -1) 

(12) 

Thus    k    need be no larger than the smallest possible value of _1_   given 

by (12). 

Theorem 3;    If |cr| > 2 ,    then 

log cm r    t. i. 
k> 1 + —-p 

2) 

Proof;    We will first prove the following lemma. 

i 

I 

Lemma k:    If |a | > 2  >    then 

a(ui+i" V- "^ ■ 2)1'ij isl' 

Proof;    By Lemma 2 and (l), 

(13) 

au. < cm, = a   j    1=1,...   . 

I 



Since, by Lemma 1, cm. > 0 , 

or 
u. 

> 1 , i=l,.. 

Substituting into (8) and (9) gives 

1   >   1 
UiUi.l - </ - 2 

, i=2,. 

This inequality and (7) and (10) yield Lemma k. 

Dividing (12) by cm > 0 and taking absolute values gives 

I 
Vi - ui 

u 
>— (cr2 - 2)1-i, i=l,... . 
- cm 

(15) 

I 
Setting the right-side of (13) greater than ß "  gives a non-convergence 

condition for i , and thus, a lower bound on k . Taking logarithms 

yields Theorem 3. 

If vie denote by K , the upper bound given in Theorem 2, and by 

K , the lower bound given in Theorem 3> we have 

K < k < K . 

In practice, these bounds are very close. Usually K = k = K . The 

following table gives values for K , X and k for various values of 

a    for both single and double precision on the IBM 360. 



Short Precision Long Precision 

(ß=l6, t=6) 1               (p=l6, t=U0 
a K k X K k K 

2.05 18 27 50 U6 77 80 

2.1 16 20 22 41 55 57 

2.2 ll* 15 16 55 ko kl 

2.5 12 15 15 51 55 Ik 

2.U 11 11 11 28 29 29 

2.5 10 10 10 25 26 26 

5.0 8 8 8 19 19 19 

k.O 6 6 6 Ik Ik Ik 

5.0 5 5 5 12 12 12 

6.0 k k k 11 11 11 

7-0 k U k 10 10 10 

Upper end Lower Bounds (x and K) and 

Observed Values for k for the IBM 560 

8 



The preceeding theorems characterize the convergence of the 

sequence [u.]   in the absence of rounding errors.    If the computer arith- 

metic satisfies certain reasonable rules, then the computed sequence [u.] 

also converges monotonically to a limit   u    which is very close to    u . 

We will prove this result for   a > 2   .    A similar argument holds for 

a < -2   . 

Let (2)  denote the operation of floating-point divide, and   Q 

denote the operation of floating-point subtraction.    For any floating- 

point numbers    a,    b,    and    c,    we will assume the following: 

(i)      a > 0 3 lQ)& > 0 

(ii) a>b>lDl> l(2)b > 10a 

(iii) a > b D c0b > c@a 

(iv) a > 2 3 aQl > 1 

(v)  a0O = a 

Theorem 4:    If   a > 2  ,    and the computer arithmetic satisfies the above 

rules,  then the computed sequence [ü.]  converges monotonically to    u   and 

Ü = u + 0 (ß1"*)  . 

Proof;    u1 = a > 2    and   Ug = <*Q{lQ)a)   .    Since   or > 2 ,  (i) yields 

10a> 0 .    From (iii) and (v) we have   a > «0(10«); thus   u1 > Ug   . 

From (ii),    1 > iQ) a .    By (iii) and (iv),    a$lQ)a > aQl > 1 .    So 

u, > Ug > 1 . 

Now assume   vL, > u.  > 1 •    By (ii),    1 > lQ)\ > \ml •    By 

(iii) and (iv),   «9(1/ v^^) > afe(l/ üj^) > ore1 > ! •    So. 

\L   > u.   , > 1 .    By induction,  the sequence [ü.] is bounded and monotone. 

Therefore, since there are a finite number of floating-point representations 

between    a   and    1 ,    the sequence converges to a limit    u > 1 .     In the 



limit, we have 

ü = aQilQv)  . 

Foliowinc the teehniques ol' Wilkinson (l(X>^).i we hove 

n = {a - Ü'1 (i+t))(i+Tl) 

for some values of    e   and   Tl    satisfying 

| c|  < ß1^    and    |T|| < ß1^ 

So, 

u = a - u      + 6  , 

where    6  = aT|-u"(e+Tl + «T])   . 

Therefore, 

ü =i[(a + 6) +V(a+ 6)2 - ^ ]. 

From Theorem 1 we see that 

G - u = 0(6) = 0(B1"t)   . 

Since   « > 1 ,    Th^ore"! k provides a bound on the relative error in    ü . 

We would like to remark that the algorithm (2) is nothing more than 

Gaussian elimination which is known to be very stable for positive definite 

systems.    The condition number of the matrix    B   is easily calculated to be 

I 

cond(B)  = 
la I +2 cos "n+T l«|  +2 

M-2cos-£r      H a\ - 2 

Using the error bound given in Forsythe and Moler (1967): If 

By = d and (B+E)z = d , then 

|y - 511 IIE|| 
< cond(B) 

II5II l|B|| 

10 



where    ||'||    denotes the spectral norm.    If   E    is due to roundoff error 

in representing   a  ,    then   ||E|| < e  = |cy|ß ~    ,    and 

lly - 2|| 
—= < 

H-2cos-i£r 

An important extension of Theorem 1 is that the LU decomposition 

will converge even if some of the upper left elements ot the matrix are 

changed.    If a tri-diagonal matrix contains a Toeplitz sub-matrix, then 

that portion of the LU decomposition converges.    Problems of this sort 

occur,  for example, with cubic spline interpolation with prescribed deriv- 

atives at the ends.    This is a result of the following. 

Theorem 5:     If   cr > 2    and   u..   = Y    where   Y    has any value except    0  , 

l/or ,    or    u    ,    then the sequence    u.  = a - l/u.      ,    i^,...,    converges 

to   u      where 

and 

u- = 5" 

(A similar result holds for   a < -2   .) 

Proof;    The nonlinear difference equation,    u.   = cr ,  can be solved 
~      i u^ 

explicitly by using the substitution   u.  =    to produce a linear 
Vi 

second-order difference equation. For a > 0 and u = Y , the solution 

is: 

**iT - 1+ 
2 

- k 

k .    Generalizations 

11 



u.  =u+ 

1 + ? 

■ v i+1 

i + 5 
^ 

where    ? = V k  - Y + u. 
Y  - U 

.    Since   a > 2 ,    the positive quantity 

(u /u )    is less than unity.    Convergence follows immediately. I 
The results we have given for scalars can also be generalized to 

matrices. 

Theorem 6;    If a matrix can be partitioned as 

A      B 

BAB 

BAB <7 

where both   A    and    B   are symmetric and positive definite, and if the . 

eigenvalues of    B- A    are greater than 2 in modulus, then the block 

Gaussian elimination of  (7   converges. 

Proof;    Block elimination is equivalent to constructing the sequence of 

matrices    U    = A ,    Ui+1 = A - BU^B  ,    1=1,2,...   .    But   A = PAPT    and 

T -1 B = PP     where    A    is the diagonal matrix of eigenvalues of   B   A .    Define 

A,  = A    and   A.L= A '- A?1.    Then   U,  = P&.P1   and if   U,  = PA.PT    then 
1 i+i i 11 ii 

ui+i = PApT " PPV^PW 
-IT T 

= PU - A.^P1 = PAi+1Pi   . 

The convergence of    ^    (as well as the rate of convergence) under the 

12 



conditions  stated follows from the results for scalars given in Theorems 1-^ 

An example of a matrix that satisfies the required conditions for 

convergence is the matrix that arises from the five-point finite difference 

approximation to Laplace's operatot* in a rectangle: 

A      -I 

I 

a = 

•     •    • 
•    •     • 

where 

A = 

-1 

-1 

-1      k 

However,  this method does not appear to be competitive with existing 

methods for this particular matrix. 

'>.    Conclusions 

Many of the obr.crvationr. which load to the; simplification in eom- 

pulint1; the LL) dcM.-omposition fur tri-(Jiaßonal Toeplitz matrices (Mwral-izo 

to Toeplitz band matrices.    Bauer (1955)  states that the Cholesky decomp- 

osition of band symmetric matrices  converges in the sense that each 

diagonal of the triangular matrix converges.    We know of no rate-of- 

convergence results for the band case. 

An alternate proof of Theorem 1 can be easily constructed by con- 

sidering the analytical solution to the difference equation (l).    Bounds 

13 



on k similar to those given in Theorems 2 and 3, but not quite as close, 

can be obtained similarly. 

1^ 
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